Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals

Author:

Banes Albert J.,Tsuzaki Mari,Yamamoto Juro,Brigman Brian,Fischer Thomas,Brown Thomas,Miller Larry

Abstract

Cells from diverse tissues detect mechanical load signals by similar mechanisms but respond differently. The diversity of responses reflects the genotype of the cell and the mechanical demands of the resident tissue. We hypothesize that cells maintain a basal equilibrium stress state that is a function of the number and quality of focal adhesions, the polymerization state of the cytoskeleton, and the amount of extrinsic, applied mechanical deformation. A load stimulus detected by a mechano-electrochemical sensory system, including mechanically sensitive ion channels, integrin–cytoskeleton machinery, and (or) a load-conformation sensitive receptor or nonreceptor tyrosine kinase, may activate G proteins, induce second messengers, and activate an RPTK or JAK/STAT kinase cascade to elicit a response. We propose the terms autobaric to describe a self-loading process, whereby a cell increases its stress state by contracting and applying a mechanical load to itself, and parabaric, whereby a cell applies a load to an adjacent cell by direct contact or through the matrix. We predict that the setpoint for maintaining this basal stress state is affected by continuity of incoming mechanical signals as deformations that activate signalling pathways. A displacement of the cytoskeletal machinery may result in a conformational change in a kinase that results in autophosphorylation and cascade initiation. pp60Src is such a kinase and is part of a mechanosensory protein complex linking integrins with the cytoskeleton. Cyclic mechanical load induces rapid Src phosphorylation. Regulation of the extent of kinase activation in the pathway(s) may be controlled by modulators such as G proteins, kinase phosphorylation and activation, and kinase inhibitors or phosphatases. Intervention at the point of ras–raf interaction may be particularly important as a restriction point.Key words: mechanoreception, cells, in vitro, load deformation.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 326 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3