Dynamics of histone acetylation in vivo. A function for acetylation turnover?

Author:

Waterborg Jakob H

Abstract

Histone acetylation, discovered more than 40 years ago, is a reversible modification of lysines within the amino-terminal domain of core histones. Amino-terminal histone domains contribute to the compaction of genes into repressed chromatin fibers. It is thought that their acetylation causes localized relaxation of chromatin as a necessary but not sufficient condition for processes that repackage DNA such as transcription, replication, repair, recombination, and sperm formation. While increased histone acetylation enhances gene transcription and loss of acetylation represses and silences genes, the function of the rapid continuous or repetitive acetylation and deacetylation reactions with half-lives of just a few minutes remains unknown. Thirty years of in vivo measurements of acetylation turnover and rates of change in histone modification levels have been reviewed to identify common chromatin characteristics measured by distinct protocols. It has now become possible to look across a wider spectrum of organisms than ever before and identify common features. The rapid turnover rates in transcriptionally active and competent chromatin are one such feature. While ubiquitously observed, we still do not know whether turnover itself is linked to chromatin transcription beyond its contribution to rapid changes towards hyper- or hypoacetylation of nucleosomes. However, recent experiments suggest that turnover may be linked directly to steps in gene transcription, interacting with nucleosome remodeling complexes.Key words: histone, acetylation, turnover, chromatin, transcription.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3