Competitive binding experiments reveal differential interactions for dihydropyridine calcium channel activators and antagonists at dihydropyridine receptors on mouse brain membranes

Author:

O'Neill Sean K.,Triggle Chris R.,Bolger Gordon T.

Abstract

The binding of the dihydropyridine (±)-202-791 and its corresponding calcium channel activating and calcium channel antagonist enantiomers ((+)-S-202-791 and (−)-R-202-791, respectively) to dihydropyridine receptors on mouse brain membranes was studied through competition for [3H]nitrendipine binding and 3H-labelled (±)-BAY K8644 ((±)-[3H]BAY K8644). Direct binding studies with (±)-[3H]BAY K8644 and [3H]nitrendipine revealed high affinity binding to a homogeneous set of dihydropyridine calcium channel activator and antagonist receptors on mouse brain membranes, (±)-[3H]BAY K8644 binding to approximately one half as many receptors as did [3H]nitrendipine. Competition binding studies revealed a significant discrimination of both high and low affinity receptors for (−)-R-202-791 and a homogeneous set of receptors for (+)-S-202-791 regardless of whether (±)-[3H]BAY K8644 or [3H]nitrendipine was the competing radioligand. Molar ratios (1:1, 5:1, 10:1) of (+)-S-202-792 to (−)-R-202-791 inhibited [3H]nitrendipine binding with displacement binding isotherms substantially different from those predicted on the basis of the binding properties of the individual enantiomers. These data suggest that dihydropyridine calcium channel antagonists and activators bind to different allosterically linked receptors or domains of the dihydropyridine protein associated with the voltage-dependent calcium channels. Furthermore, these results support the concept of multiple binding sites for dihydropyridine ligands.Key words: dihydropyridines, Ca2+ channels, allosteric interactions.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3