The first 20 years (1978-1979 to 1998–1999) of ice-wedge growth at the Illisarvik experimental drained lake site, western Arctic coast, Canada

Author:

Mackay J Ross,Burn C R

Abstract

In August 1978, a large tundra lake was drained to study the aggradation of permafrost into newly exposed lake-bottom sediments. Ice-wedge growth, which started in the first winter following drainage, had ceased in most of the lake bottom within about twelve years. The gradual cessation of thermal contraction cracking can be attributed to rapid vegetation growth, snow entrapment, an increase in winter ground temperatures, and a decrease in the linear coefficient of thermal contraction associated with freeze–thaw consolidation of the initially saturated lake-bottom sediments. The tilt and separation of markers in the active layer revealed gradual convergence towards the troughs even after ice-wedge growth had ceased. For the first few years the ice-wedge growth rate was up to 3 cm/a as determined by excavation, drilling, separation of the bottoms of benchmarks installed into permafrost, and divergence of free-floating inductance coils placed on the sides of ice wedges well below the bottom of the active layer. The vertical extent of most ice wedges was probably about 2 m, as deduced from the depths of ice-wedge cracks and the geometries of the wedge tops. Many thermal contraction cracks propagated upward to the ground surface from the tops of the ice wedges rather than downward from the ground surface. Small, upward facing, horizontal steps and vertical slickensided surfaces in permafrost on both sides of an excavated ice wedge near its top indicated that the adjacent permafrost had moved upward, relative to the wedge, from thermal expansion during the warming period.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 120 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3