Adrenomedullary pressor responses to stimulation of the rostral hypothalamus in the rat: influence of adrenaline-induced vasodilation and reflex cardioinhibition
-
Published:1988-02-01
Issue:2
Volume:66
Page:213-221
-
ISSN:0008-4212
-
Container-title:Canadian Journal of Physiology and Pharmacology
-
language:en
-
Short-container-title:Can. J. Physiol. Pharmacol.
Abstract
Electrical stimulation (100 Hz, 1 ms, 150 μA, 10 s) of the anterior hypothalamus in chloralose-anesthetized rats evoked a biphasic pressor response consisting of an initial sharp rise in arterial pressure at the onset of stimulation, followed by a second elevation after cessation of the stimulus. This response was accompanied by an increase in plasma noradrenaline and adrenaline levels. Peripheral sympathectomy with guanethidine selectively abolished the primary phase of the biphasic pressor response, while bilateral removal of the adrenal medulla eliminated only the secondary component. After α-adrenergic blockade with phentolamine, the primary phase of the stimulation-induced response was reduced while the secondary pressor component was blocked and replaced by a significant hypotension. The intravenous administration of sotalol enhanced the secondary pressor component without affecting the stimulation-induced plasma noradrenaline and adrenaline responses. After treatment with atropine, the secondary pressor effect was also potentiated, as the reflex bradycardia normally associated with the response was eliminated. A subsequent administration of sotalol in these rats further potentiated the secondary pressor component to stimulation. In rats treated with atropine and sotalol, the sympathetic vasomotor and the adrenomedullary pressor responses could be dissociated according to thresholds and stimulus frequency or current–response characteristics. The results suggest that in intact rats, adrenaline-induced vasodilation and reflex cardiac inhibition contribute to either reduce or mask the adrenomedullary component of the biphasic pressor response evoked by stimulation of the anterior hypothalamus. The study also raises the hypothesis of a dual regulation of both components of the sympathetic system in the anterior hypothalamic region.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology