The refocused discrimination induced by variable amplitude minipulses (DIVAM) experiment — Improved domain selection in semicrystalline fluoropolymers by 19F solid state nuclear magnetic resonance spectroscopy

Author:

Montina Tony1,Hazendonk Paul1,Wormald Philip2,Iuga Dinu3

Affiliation:

1. Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.

2. School of Chemistry, University of St Andrews, Purdie Building, St Andrews, Scotland KY16 9ST, UK.

3. Department of Physics, University of Warwick, Coventry CV4 7AL, UK.

Abstract

The discrimination induced by variable amplitude minipulses (DIVAM) filter can be tuned to select for signals from a particular domain, therefore it is possible to obtain signals specific to different domains using only one experiment. An early description of the DIVAM sequence, where the filter terminates with cross-polarization, explains this tune ability using a simple one-spin-relaxation model, thereby limiting the selection mechanism to incoherent processes. Recently, a more complete description of the selection behaviour was offered for the DIVAM filter, when it was directly applied to the observed nucleus (direct DIVAM), taking into account both the incoherent and coherent terms. Direct DIVAM experiments on poly(vinylidenefluoride) (PVDF) show significant phase distortions when large excitation angles were used. The signal from the amorphous domain is seen to nutate in a normal fashion with respect to the excitation angle, while those from the crystalline and defect units did not. The refocused DIVAM sequence is introduced to restore normal nutation for all signals. The selection behaviour is investigated using SIMPSON (simulation program for solid-state nuclear magnetic resonance (NMR) spectroscopy) simulations. These illustrate that the isotropic shift terms have been effectively removed and the dipolar term attenuated, such that the chemical shift anisotropy (CSA) leads to domain selection; however, in a different manner than seen in direct DIVAM. Therefore, this sequence provides a method to select on the basis of the CSA term in the presence of both strong dipolar couplings and a large range of isotropic shifts.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3