Compression of granular materials

Author:

Mesri Gholamreza12,Vardhanabhuti Barames12

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, USA.

2. Department of Civil Engineering, Kasetsart University, 50 Phahonyotin St., Ladyao Jatujak, Bangkok 10900, Thailand.

Abstract

Compression data on over 100 sands were examined to clarify the role of particle rearrangement through interparticle slip and rotation and particle damage on primary compression, including the yield stress, secondary compression, and coefficient of lateral pressure at rest. During the increase in effective vertical stress, mechanisms such as tighter packing that promote particle locking and interparticle slip and particle damage that promote particle unlocking together determine the relationship between void ratio and effective vertical stress. Three levels of particle damage together with interparticle slip and rotation determine three types of compression behavior and a yield stress at the abrupt onset of particle fracturing and splitting. The ratio of secondary compression index to compression index is independent of whether compression results from overcoming interparticle friction through interparticle slip, from overcoming particle strength through particle damage, or both; and therefore it is a constant independent of the effective stress range. The coefficient of lateral pressure at rest of an initially dense sand starts with a value defined by the Jaky equation and the maximum friction angle and remains constant up to the abrupt onset of particle fracturing and splitting, at which point it begins to increase with an increase in effective vertical stress.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 198 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3