Author:
Gutstein Howard B,Thome Jennifer L,Fine Jeffrey L,Watson Stanley J,Akil Huda
Abstract
Initially, opioid signaling had been thought to be mainly inhibitory in nature. However, it has been shown that opioids can activate specific signaling pathways and induce immediate early gene (IEG) transcription in brain. IEGs can then regulate the transcription of other genes, leading to changes in neuronal function in response to extracellular stimuli. This study was designed to identify brain regions that demonstrate specific induction of the IEG c-fos, a component of the AP-1 transcription factor, in response to acute morphine, and to contrast this induction with the stressful effects of the injection itself. Rats received either 10 mg/kg morphine or an equivalent volume of saline injected subcutaneously. Animals were then sacrificed 15, 30, or 60 min after injection. Specific induction of c-fos mRNA by morphine was seen in dorsomedial caudate-putamen, paraventricular nucleus of the thalamus, central and intralaminar thalamic nuclei, dorsal central grey, superior colliculus, lateral parabrachial nucleus, inferior olivary complex, and caudal nucleus tractus solitarius. These findings represent the first complete anatomical mapping of c-fos induction in rat brain, and show that acute morphine administration alters gene expression in several areas related to known functional properties of opioids. However, regions showing c-fos induction are not all classically associated with opioid receptors and opioid-mediated effects. These findings are considered in the context of the effects of opioids on neural circuitry as well as direct, receptor-mediated effects of morphine on neural cells.Key words: anatomy, immediate early genes, opioids, neural circuitry, nociception, transcriptional regulation.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献