Early interactions ofEntamoeba histolyticatrophozoites with parenchymal and inflammatory cells in the hamster liver: an immunocytochemical study

Author:

Ventura-Juárez J,Campos-Rodríguez R,Tsutsumi V

Abstract

We studied the early in situ interactions of live and fixed Entamoeba histolytica trophozoites with hamster hepatic parenchymal and inflammatory cells using immunoperoxidase and immunoelectronmicroscopy. Close contact between trophozoites and endothelial cells and the diffusion of amoebic molecules from trophozoites towards nearby endothelial cells and distant hepatocytes were observed. The inflammatory cells around the amoebae and the remnants of parenchymal cells and hepatocytes located close to the lesion had a positive stain for amoebic molecules. In the amoebae, at the ultrastructural level, molecules were attached to the membranes and inside the vesicles. These molecules were apparently released into the space formed between the parasite and the endothelial cells. The endothelial cells and the nearby and distant hepatocytes captured amoebic molecules, and later they became necrotic. Contrarily, when fixed amoebae were inoculated, amoebic molecules were captured by endothelial cells and polymorphonuclear (PMN) leukocytes, but neither suffered any damage. In this work, we are presenting evidence clearly showing that some molecules of the amoeba can diffuse away long distances causing cytotoxic effects and even necrosis on hepatic cells of hamster liver without the need of the trophozoite being in close contact with the target cells. They also may promote lytic or proinflammatory effects by inducing the secretion of enzymes or cytokines in other nonparenchymal cells, like PMN leukocytes and endothelial cells. Our results suggest that the accepted mechanisms of cytotoxicity by amoebae are not exclusively restricted to the following sequence: adhesion, phagocytosis, and necrosis.Key words: amoebiasis, Entamoeba histolytica, liver, hamster, immunocytochemistry.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3