Affiliation:
1. Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada.
Abstract
Managing second-growth forests for multiple benefits requires enhanced information on decomposition of woody debris generated during forestry operations. Experimental thinning and biomass sampling at the Shawnigan Lake Research Forest on southern Vancouver Island facilitated retrospective sampling of Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) stem sections (4.9–21.5 cm diameter) from 0 to 23 years after cutting. A sigmoidal pattern of density loss was observed, while a single-exponential fit gave a decay rate (k) of 0.058 year–1. Initial N concentrations were higher in bark than in sapwood and heartwood, and all increased during decay, while C/N ratios declined to around 175 for wood and 70 for bark. Nitrogen contents initially increased but tended to decline after about 50% C loss. Solid-state 13C nuclear magnetic resonance spectroscopy showed little change in organic composition, consistent with white-rot fungal decay, with only a few 19-year samples showing large increases in lignin typical of extensive brown-rot decay. Hydrolyzable monosaccharides of wood and bark were dominated by glucose followed by mannose, xylose, galactose, and arabinose. For wood, the mole fraction of mannose decreased with decomposition, whereas those of glucose, arabinose, and galactose increased slightly and that of xylose remained constant for both brown and white rot. Our results support indications that decomposition of smaller diameter woody debris from managed conifer forests will likely be dominated by white-rot fungi, leaving residues high in cellulose rather than in lignin.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献