Author:
Taylor Barry R.,Parkinson Dennis
Abstract
Respiration rates and mass losses of decomposing pine (Pinus contorta Loud. × P. banksiana Lamb.) and aspen (Populus tremuloides Michx.) leaf litter were compared in laboratory microcosms for a range of temperature and moisture levels. For both litter types, a pair of high-temperature treatments (18, 26 °C) and a pair of low-temperature treatments (2, 10 °C) were distinguishable on the basis of respiration rate, mass loss, shape of the respiration curve, and (for pine) estimated microbial efficiency. Respiration rates in high-temperature treatments showed an initial increase to a wide peak (wider and later at 18 than at 26 °C), followed by a sharp decline; respiration of low-temperature treatments was nearly constant through time or declined slowly. Moisture level (15, 30, or 60 mL∙week−1 watering rate) was less important than temperature in determination of mass losses or respiration rates. Aspen respiration at 18 and 26 °C peaked sooner and declined more rapidly at higher moisture levels than at lower ones; at 2 and 10 °C, higher moisture levels inhibited respiration owing to saturation. Mass loss of pine needles after 153 days decay was a linear function of temperature (R2 = 0.92). The best regression describing mass loss of aspen litter after 130 days decay was a linear function of both temperature and moisture, without interaction (R2 = 0.82). Moisture level became more influential as temperature increased. Researchers are cautioned about the limitations of cumulative respiration curves, and alternatives, such as ANOVA, correlation, and the runs test, are suggested.
Publisher
Canadian Science Publishing
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献