Author:
Berven Leise A.,Dolphin David,Withers Stephen G.
Abstract
The mechanism of base-catalysed anomerization of per-O-acetylated 2,4-dinitrophenyl-β-D-glucopyranoside in dimethylsulfoxide has been investigated using a variety of techniques. A mechanism involving proton abstraction at C-1 was eliminated by the absence of proton exchange at that center and the measurement of a secondary deuterium kinetic isotope effect for the 1-deuterio substrate. A mechanism involving phenolate departure and recombination is rendered unlikely on the basis of remote substituent effects on the reaction rate and by the absence of any exchange of the phenyl moiety with added phenolate. A mechanism involving nucleophilic aromatic substitution initiated by an attack of the dimethylsulfinyl anion to generate a glucosyl oxyanion intermediate that anomerizes and recombines with the reactive aryl intermediate is consistent with the observations. This mechanism is further supported by the observation of a purple Meisenheimer complex intermediate and by the observed exchange between the substrate containing a labelled sugar moiety and added unlabelled 2,3,4,6-tetra-O-acetyl-β-D-glucopyranose. Keywords: glycoside, anomerization, reaction mechanism.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献