Origin of the H genome in StH-genomic Elymus species based on the single-copy nuclear gene DMC1

Author:

Sun Genlou1,Zhang Xiaodi1

Affiliation:

1. Biology Department, Saint Mary’s University, Halifax, NS B3H 3C3, Canada.

Abstract

Previous studies have suggested that the H haplome in Elymus could originate from different diploid Hordeum species, however, which diploid species best represent the parental species remains unanswered. The focus of this study seeks to pinpoint the origin of the H genome in Elymus. Allopolyploid Elymus species that contain the StH genome were analyzed together with diploid Hordeum species and a broad sample of diploid genera in the tribe Triticeae using DMC1 sequences. Both parsimony and maximum likelihood analyses well separated the American Hordeum species, except Hordeum brachyantherum subsp. californicum, from the H genome of polyploid Elymus species. The Elymus H-genomic sequences were formed into different groups. Our data suggested that the American Horedeum species, except H. brachyantherum subsp. californicum, are not the H-genomic donor to the Elymus species. Hordeum brevisubulatum subsp. violaceum was the progenitor species to Elymus virescens, Elymus confusus, Elymus lanceolatus, Elymus wawawaiensis, and Elymus caninus. Furthermore, North American H. brachyantherum subsp. californicum was a progenitor of the H genome to Elymus hystrix and Elymus cordilleranus. The H genomes in Elymus canadensis, Elymus sibiricus, and Elymus multisetus were highly differentiated from the H genome in Hordeum and other Elymus species. The H genome in both North American and Eurasian Elymus species was contributed by different Hordeum species.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Reference44 articles.

1. Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative

2. Dewey, D.R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In Gene manipulation in plant improvement. Edited by J.P. Gustafsen. Plenum Press, New York, pp. 209–279.

3. Genome analysis of South American Elymus (Triticeae) and Leymus (Triticeae) species based on variation in repeated nucleotide sequences

4. Genome analysis of species in the genus Hystrix (Triticeae; Poaceae)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3