Abstract
Historical records of average seasonal water levels in the St. Lawrence River over the past 80 years reveal cyclic variations of up to 1 m above (1976) and 1 m below (1965) present levels. These variations are probably related to climatic conditions in the basin. Over the same period, the vertical range of seasonal water levels decreased from 2.2 to 1.5 m because of discharge regulation. Exposure of new substrate during periods of extreme low water levels may facilitate the invasion of aggressive and (or) exotic species. In Lake Saint-Pierre, a strong negative relationship was observed between seasonal water level and the percentage of emergent plant cover. Under low water levels, the lake becomes a large (387 km2) marshland that could support a high plant biomass (286 times 103 t) whereas under high water levels, the lake shifts to a vast (501 km2) open-water body with a lower predicted plant biomass (117 times 103 t). A model of the major anthropic and climatic forces acting on water levels is also presented; it describes aquatic plant biomass allocation and species diversity under different water level conditions.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献