Marine soil behaviour classification using piezocone penetration test (CPTu) and borehole records

Author:

Yin K.S.1,Zhang L.M.1,Wang H.J.1,Zou H.F.1,Li J.H.2

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

2. Department of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.

Abstract

Several piezocone penetration test (CPTu)-based soil behaviour classification systems (SBCs) have been developed for standard sites, where clays, silt, and sand dominate. However, problems can occur when applying the SBCs to offshore sites, where the marine soils may be decomposed from rocks or mixed with artificial fills. This study evaluates the accuracy of six CPTu-based SBCs for marine soils at a site offshore Hong Kong based on 16 CPTu soundings with 25 367 data points by comparing them with composition-based SBCs from borehole records in the vicinity of each sounding. The soil types are determined from six common CPTu-based SBCs. The interpretation of CPTu data is first performed to generate soil type variables comparable to borehole data, followed by a cross-validation study. The soil classification performance of each SBC is quantified by the weighted kappa coefficient and the Kendall correlation coefficient between the soil types generated by the CPTu-based and composition-based SBCs. The classification accuracy for each soil type is also evaluated via the root mean squared error and the mean absolute error. The classified soil types from the CPTu data are associated with a median degree of consistency, indicating the need for combining CPTu-based and composition-based SBCs for marine soil classification.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3