Normally loaded inclined strip anchors in cohesionless soil

Author:

Al Hakeem Nabil1,Aubeny Charles2

Affiliation:

1. Department of Civil Engineering, University of Wasit, Al-Kut, Iraq.

2. Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.

Abstract

Plate anchors are among the most effective anchorage systems that are widely used to resist horizontal and inclined uplift loads in many offshore and onshore applications. Previous research on plate anchors has largely focused on the horizontal or vertical breakout problems, with limited attention directed towards obtaining a full characterization of the effects of anchor orientation angle. The present study utilizes displacement-based finite element analyses to investigate the stability and performance of strip anchor embedded in cohesionless soil for plate inclination angles ranging from 0° to 90° from horizontal, where the applied load is normal to and acts at the center of the plate. This study investigates the effects of scale and roughness, along with the geometry of the failure mechanism for various plate orientations and embedment depths. The analyses, presented in terms of a non-dimensional breakout factor Nq, show that the breakout factor increases significantly with an increase in the inclination, especially for angles greater than 45° in loose sand and greater than 60° in dense sand. The analyses also show that scale effects (anchor width) can affect capacity. Finite element analyses have been used to introduce simple design charts relating the breakout factor to the embedment depth and relative density. Comparisons to experimental and numerical studies showed good agreement.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3