Landslide hazard assessment by smoothed particle hydrodynamics with spatially variable soil properties and statistical rainfall distribution

Author:

Mori Hirotoshi1,Chen Xiaoyu2,Leung Yat Fai2,Shimokawa Daisuke1,Lo Man Kong3

Affiliation:

1. Graduate School of Science and Technology for Innovation, The Yamaguchi University, Yamaguchi, Japan.

2. Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.

3. Department of Civil & Environmental Engineering, National University of Singapore, Singapore.

Abstract

Rainfall-induced landslides have caused significant damage to structures and casualties in the past decades, and it is of great importance to assess the post-failure behavior of slopes. This study proposes a probabilistic framework to evaluate the hazards associated with landslide runout arising from loose-fill slope failures. The failure process is simulated by the smoothed particle hydrodynamics (SPH) method, which is capable of capturing large deformations of landslides. The shear strength parameters of the soils are modeled as random variables, and random field simulations are performed to explore the effects of soil variability on the runout distance. In addition, the uncertainty in rainfall characteristics is represented by the Gumbel distribution, with the ensuing rainfall infiltration simulated in multiple seepage analyses to obtain pore pressure profiles in the slope, which are then adopted as initial conditions for the SPH method. Combining these various sources of uncertainty, the hazard factors indicating the risks for nearby structures are quantified based on the response uncertainty in landslide runout distances. To demonstrate this framework, the hazard levels associated with two typical layouts of loose-fill slopes are evaluated, and the results may serve as risk zoning indicators for adjacent developments.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference57 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3