On the thermal consolidation of Boom clay

Author:

Delage Pierre,Sultan Nabil,Cui Yu Jun

Abstract

When a mass of saturated clay is heated, as in the case of host soils surrounding nuclear waste disposal at great depth, the thermal expansion of the constituents generates excess pore pressures. The mass of clay is submitted to gradients of pore pressure and temperature, hydraulic and thermal flows, and changes in its mechanical properties. In this work, some of these aspects were experimentally studied in the case of Boom clay to help predict the response of the soil, in relation to investigations in the Belgian underground laboratory at Mol. Results of slow-heating tests with careful volume change measurements showed that a reasonable prediction of the thermal expansion of the clay-water system was obtained by using the thermal properties of free water. Despite the density of Boom clay, no significant effect of water adsorption was observed. The thermal consolidation of Boom clay was studied through fast-heating tests. A simple analysis shows that the hydraulic and thermal transfers are uncoupled. Experimental results from fast-heating tests showed that the consolidation coefficient does not change significantly with increased temperature, due to the opposite effect of increasing permeability and decreasing porosity. The changes of permeability with temperature were investigated by running constant head measurements at various temperatures. An indirect analysis, based on estimation of the coefficient of volume change mv, showed that the indirect method of estimating the permeability from consolidation tests should be considered carefully. Intrinsic permeability values were derived by considering the change of the viscosity of free water with temperature. A unique relationship between the intrinsic permeability and the porosity was observed, with no dependence on temperature, confirming that the flow involved in the permeability test only concerns free water.Key words: clays, thermal consolidation, adsorbed water, permeability, temperature effects, radioactive waste disposal.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3