The role of particle breakage in pile creep in sand

Author:

Leung C F,Lee F H,Yet N S

Abstract

It has been reported in the literature that the settlement of pile foundations in sand under sustained service loads is time dependent. As this phenomenon is not well understood, an experimental study is conducted to investigate the mechanism of pile creep in sand. In the first part of the study involving centrifuge modelling of piles, the test results show that the pile settlement increases with the logarithm of time and the rate of settlement increase is dependent upon the magnitude of applied load and sand density. The changes in the soil and pile stresses observed from instruments installed in the soil and along the pile shaft reveal that under sustained loads, stress relaxation takes place at and around the pile tip area with consequent stress transfer to the shaft. Associated ground surface settlement shows that creep is related to volumetric compression rather than dilation of sand. The centrifuge test findings are then related to the creep behaviour of sand subjected to one-dimensional compression. Examination of sand particles before and after sustained compression loads reveals that sand grains have been broken with their angular protrusions gradually ground off with time. The phenomena of sand particle breakage and stress relaxation around the pile tip provide evidence for the hypothesis that the observed creep is due to the progressive breakdown of sand particules. Key words: centrifuge models, creep, mechanism, one-dimensional compression, pile, sand.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3