Author:
Connor Dennis A.,Arnold Donald R.,Bakshi Pradip K.,Cameron T. Stanley
Abstract
The photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction of methanol, 2,6-dimethyl-1,6-heptadiene, and 1,4-dicyanobenzene yields three distinct types of 1:1:1 adducts: an acyclic product, 4-(1-methoxymethyl-1,5-dimethyl-5-hexenyl)benzonitrile (8, 5%); a cis–trans pair of cyclohexanes, 4-(3-methoxymethyl-1,3-dimethylcyclohexyl)benzonitrile (9cis (12%) and 9trans (11%)); and a cis–trans pair of cycloheptanes, 4-(4-methoxy-1,4-dimethylcycloheptyl)benzonitrile (10cis (12%) and 10trans (10%)). Variation in the concentration of the nucleophile, methanol, and codonor, biphenyl, affects the product ratio and it has been possible to establish the mechanisms for the formation of these products. The acyclic product is formed by a typical photo-NOCAS reaction, that is, addition (anti-Markovnikov) across one of the heptadiene double bonds. The cyclohexane products are formed following 1,6-endo cyclization of the intermediate β-alkoxy radical. And the cycloheptane products result from 1,7-endo,endo cyclization of the initially formed 2,6-dimethyl-1,6-heptadiene radical cation. Comparison of the relative rates of these cyclization processes can be made with those of the next smaller homolog, 2,5-dimethyl-1,5-hexadiene. Keywords: photochemistry, photoinduced electron transfer, radical ions, radicals, cyclization.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献