The echolocation calls of hoary (Lasiurus cinereus) and silver-haired (Lasionycteris noctivagans) bats as adaptations for long- versus short-range foraging strategies and the consequences for prey selection

Author:

Barclay Robert M. R.

Abstract

Amongst aerial-feeding insectivorous bats, differences in the design of echolocation calls appear to be associated with differences in foraging strategy. Recordings and observations of hoary (Lasiurus cinereus) and silver-haired (Lasionycteris noctivagans) bats in Manitoba, Canada, support such an association. Lasionycteris noctivagans use multiharmonic search–approach calls with an initial frequency sweep and a constant frequency tail. Such calls are suited for bats foraging in the open but near obstacles, and pursuing prey detected at relatively close range. This is the foraging strategy employed by this relatively slow, manoeuverable species. Lasiurus cinereus employ single harmonic search–approach calls that are low (20–17 kHz), essentially constant frequency signals. Calls of this design are suited for long-range target detection in open air situations, the foraging strategy used by L. cinereus. Differences in call design may explain dietary differences between the two species. Lasiurus cinereus consistently prey on large insects. The low, constant frequency design of their calls means that small insects are detectable only at close range and are thus difficult for this fast-dying bat to catch. The broad-band calls used by L. noctivagans do not restrict prey detection and these bats prey on a wider range of insects. Similar restrictions on prey detection, caused by echolocation call specializations, may be important in producing what might otherwise be considered active prey selection by some insectivorous bats.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3