FELDSPATHIC INCLUSIONS IN THE GARDAR IGNEOUS ROCKS OF SOUTH GREENLAND AND THEIR RELEVANCE TO THE FORMATION OF MAJOR ANORTHOSITES IN THE CANADIAN SHIELD

Author:

Bridgwater D.

Abstract

Anorthosite xenoliths and plagioclase megacrysts occur in Gardar igneous rocks over an area of approximately 50 000 sq km in South Greenland. The anorthosite inclusions represent a top accumulate of labradorite, which crystallized at a relatively early stage from the developing Gardar magmas at depth, while the megacrysts are regarded as feldspars that remained suspended in their parent magmas for a considerable period at a later stage when the Gardar magmas had developed their dominantly alkaline character. The formation of anorthosite was a continuous process, which probably started about 1300 m.y. ago (the age of the earliest Gardar intrusions) and continued to about 1200 m.y.The Gardar anorthosites formed in the period immediately preceding the development of the Grenville metamorphic belt of the Canadian Shield. They are particularly relevant to the problem of the anorthosites in the Canadian Shield, since they provide evidence for the formation of anorthosites in pre-Grenville, post-Elsonian non-orogenic conditions. It is suggested that the main factor controlling the formation of the two main types of primary anorthosites—those of layered intrusions and those of the almost monomineralic Adirondack type—is the relative specific gravity of the plagioclase and its parent magma. In most layered intrusions, formed from uncontaminated basaltic magmas, the first-formed plagioclases are bytownitic and would sink in their parent magma. In contrast, in alkali provinces such as the Gardar and in orogenic environments where original basaltic magmas may have been contaminated, the first-formed plagioclase is commonly either labradorite or andesine. This will rise in either basaltic or dioritic magma. The separation of plagioclase by flotation from complementary mafic minerals provides a mechanism by which anorthositic rocks can form from basic magmas apparently unaccompanied by mafic layers.Once formed, anorthositic masses of this type would be extremely resistant and could survive several later plutonic episodes as large monomineralic masses in deep-seated mesozonal rocks or the upper katazonal rocks. In contrast the complementary layered mafic rocks would form layered masses in more deep-seated katazonal gneisses.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3