Author:
Chen Cheng-Cheng,Chen Shyh-Yeang,Liaw Jiunn-Jye
Abstract
The hysteretic behavior of buckling inhibited braces (BIBs) (or unbonded braces) made of low yield strength steel is investigated experimentally. Test results from four large-scale specimens showed that the BIB is able to prevent early buckling and cracking that occur in conventional braces and develop to the full capacity the strength, ductility, and energy-dissipation capacity of the steel used. In addition, the use of low yield strength steel results in small yield deformation and dramatic strain hardening of the BIB. Earthquake simulation tests of a 0.4-scale three-storey ductile concentrically braced frame (DCBF), which employed low yield strength steel BIBs as concentric braces, were carried out. Test results verified the applicability of the BIB and the high seismic performance of the DCBF. The idea of controlled plastification worked well. In addition, both the 70% lateral-force distribution requirement of the Uniform Building Code and the 30% lateral-force distribution requirement of CAN/CSA-S16.1-94 seem unnecessary for a DCBF system.Key words: concentrically braced frames, earthquake-resistant structures, braces, steel structures.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献