Phasic influences of vagal stimulation on atrioventricular conduction

Author:

Warner Margaret R.,Loeb Jerod M.

Abstract

The beat-by-beat changes in atrioventricular (AV) conduction evoked by constant frequency and phase-coupled vagal stimulation were examined both qualitatively and quantitatively in 13 anesthetized dogs. The effects of pacing cycle length and sympathetic activity on the vagally induced phasic changes in AV conduction were also characterized. When the vagal stimulus interval was nearly equal to the pacing cycle length and the vagal stimulus moved progressively through the cardiac cycle, AV interval oscillated in a rhythmic fashion. The rhythmicity of the vagally induced AV interval oscillations was altered substantially by changes in either the vagal stimulus interval or the pacing cycle length. The vagally induced AV interval oscillations were abolished during phase-coupled vagal stimulation; however, the magnitude of the resultant steady-state AV interval depended on the time relative to the phase of the cardiac cycle that the vagal stimulus was delivered. In the presence or absence of sympathetic stimulation, a vagal stimulus falling approximately 200 ms prior to atrial depolarization evoked the greatest prolongation in AV interval, regardless of the pacing cycle length. Additionally, the effects of combined sympathetic and phase-dependent vagal stimulation on the AV interval were additive. These data confirm that the influence of a vagal stimulus on AV interval can be predicted from the phase in the cardiac cycle that the vagal stimulus is delivered. Moreover, this phase dependency of vagal effects evokes marked qualitative variations in AV interval response patterns when either the vagal stimulus interval or the pacing cycle length is altered.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AV blocking due to asynchronous vagal stimulation in rats;American Journal of Physiology-Heart and Circulatory Physiology;2000-01-01

2. Effects of spatial dispersion of acetylcholine release on AV conduction responses to vagal stimulation in dogs;American Journal of Physiology-Heart and Circulatory Physiology;1991-08-01

3. Characterization of responses of neonatal sinus and AV nodes to critically timed, brief vagal stimuli;American Journal of Physiology-Heart and Circulatory Physiology;1991-02-01

4. Separate parasympathetic control of heart rate and atrioventricular conduction of dogs;American Journal of Physiology-Heart and Circulatory Physiology;1990-08-01

5. Brief vagal bursts can induce Wenckebach arrhythmia;American Journal of Physiology-Heart and Circulatory Physiology;1989-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3