Genetically modified soybean expressing insecticidal protein (Cry1Ac): Management risk and perspectives

Author:

Martins-Salles Silvia1,Machado Vilmar2,Massochin-Pinto Laura3,Fiuza Lidia M.4

Affiliation:

1. PPG Biology, Universidade do Vale do Rio dos Sinos (UNISINOS), Avenida Unisinos, 950, São Leopoldo, RS 93022-750, Brazil

2. Pós graduação em biotecnologia, Universidade do Oeste de Santa Catarina—UNOESC, R. Antônio Pinto, 21—Alvorada, Videira, SC 89560-000, Brazil

3. Institute of Technology in Food for Health—itt-Nutrifor, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, Cristo Rei, São Leopoldo, RS CEP 93.022-000, Brazil

4. Laboratory of Microbiology and Toxicology; EEA—Instituto Rio Grandense do Arroz, Avenida José Bonifácio de Cavalho Bernardes, 1494, Cachoeirinha, RS CEP 94930-030, Brazil

Abstract

A Bt soybean has been recently developed, thus, efficiently regulating the populations of major lepidopteran pests. However, in other cases, these benefits have been reduced or lost because of the rapid evolution of pest resistance to the Bt toxins in transgenic crops. When pest populations are exposed to Bt crops and to refuges (non- Bt plants), the evolution of resistance is governed by the fitness of resistant individuals relative to susceptible individuals for both the presence and absence of Bt toxins. One major ecological concern regarding the biosafety of Bt crops on the environment is their potential effects on non-target organisms, especially predators and parasitoids that play an important role in pest control. This information is important for supporting insect resistance management (IRM) programs and for improving agricultural practices in a crop production system with Bt plants. Before the use of Bt plants for insect pest control in Brazil is adopted, IRM programs should be established to ensure the sustainability of this technology for integrated pest management (IPM). This review presents data on Bt soybean and lepidopteran pests as well as on the importance of natural enemies as a form of biological control, and applications for IPM and IRM.

Publisher

Canadian Science Publishing

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3