Impact of plastic pollution on atmospheric carbon dioxide

Author:

Gurgacz Natalia S.1,Kvale Karin2,Eby Michael1,Weaver Andrew J.1ORCID

Affiliation:

1. School of Earth and Ocean Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada

2. GNS Science, 1 Fairway Drive, Avalon 5010, PO Box 30368, Lower Hutt 5040, New Zealand

Abstract

Since the beginning of its large-scale production in the early 20th century, plastics have remained an important material in widespread use throughout modern society. Nevertheless, despite possessing many benefits, plastics are resistant to degradation and instead accumulate in the ocean and terrestrial sediments, thereby potentially affecting marine and terrestrial ecosystems. Plastics release CO2 throughout their entire lifecycle; during the extraction of materials used in their production, through plastic–carbon leaching in the marine and terrestrial environment, and during their different end-of-life scenarios, which include recycling, landfill, and incineration. Here, we use the University of Victoria earth system climate model to quantity the effects on atmospheric CO2 and the ocean carbon cycle by using upper-bound estimates of carbon emissions from marine plastic–carbon leaching or land-based incineration. Despite the suggestions of some, our results indicate that it has only a very minor influence and an insignificant effect on the earth's global climate system. This holds even if plastic contamination increases well beyond current levels. On the other hand, carbon emissions associated with plastic production and incineration have a greater impact on climate while still dwarfed by emissions associated with the combustion of fossil fuels (coal, oil, and natural gas) and other anthropogenic sources. Our results have important policy implications for ongoing United Nations Environment Programme Intergovernmental Negotiating Committee on Plastic Pollution negotiations.

Funder

Natural Sciences and Engineering Research Council of Canada

Climate Action and Awareness Fund

Publisher

Canadian Science Publishing

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3