Enemy escape: A general phenomenon in a fragmented literature?

Author:

Mlynarek Julia J.1,Moffat Chandra E.1,Edwards Sara2,Einfeldt Anthony L.1,Heustis Allyson13,Johns Rob3,MacDonnell Mallory1,Pureswaran Deepa S.4,Quiring Dan T.2,Shibel Zoryana1,Heard Stephen B.1

Affiliation:

1. Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada

2. Population Ecology Group, Faculty of Forestry & Environmental Management, University of New Brunswick, P.O. Box 4400, Fredericton, NB E3B 5A3, Canada

3. Forest Insect Ecology, Atlantic Forestry Centre, 1350 Regent Street, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada

4. Forest Insect Ecology, Laurentian Forestry Centre, 1055 Du PEPS Street, P.O. Box 10380, Québec, QC G1V 4C7, Canada

Abstract

Many populations are thought to be regulated, in part, by their natural enemies. If so, disruption of this regulation should allow rapid population growth. Such “enemy escape” may occur in a variety of circumstances, including invasion, natural range expansion, range edges, suppression of enemy populations, host shifting, phenological changes, and defensive innovation. Periods of relaxed enemy pressure also occur in, and may drive, population oscillations and outbreaks. We draw attention to similarities among circumstances of enemy escape and build a general conceptual framework for the phenomenon. Although these circumstances share common mechanisms and depend on common assumptions, enemy escape can involve dynamics operating on very different temporal and spatial scales. In particular, the duration of enemy escape is rarely considered but will likely vary among circumstances. Enemy escape can have important evolutionary consequences including increasing competitive ability, spurring diversification, or triggering enemy counteradaptation. These evolutionary consequences have been considered for plant–herbivore interactions and invasions but largely neglected for other circumstances of enemy escape. We aim to unite the fragmented literature, which we argue has impeded progress in building a broader understanding of the eco-evolutionary dynamics of enemy escape.

Publisher

Canadian Science Publishing

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3