Rust resistance in Triticum cylindricum Ces. (4x, CCDD) and its transfer into durum and hexaploid wheats

Author:

Bai D.,Scoles G. J.,Knott D. R.

Abstract

In order to counteract the effects of the mutant genes in races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) in wheat, exploration of new resistance genes in wheat relatives is necessary. Three accessions of Triticum cylindricum Ces. (4x, CCDD), Acy1, Acy9, and Acy11, were tested with 10 races each of leaf rust and stem rust. They were resistant to all races tested. Viable F1 plants were produced from the crosses of the T. cylindricum accessions as males with susceptible MP and Chinese Spring ph1b hexaploid wheats (T. aestivum, 6x, AABBDD), but not with susceptible Kubanka durum wheat (T. turgidum var. durum, 4x, AABB), even with embryo rescue. In these crosses the D genome of hexaploid wheat may play a critical role in eliminating the barriers for species isolation during hybrid seed development. The T. cylindricum rust resistance was expressed in the F1 hybrids with hexaploid wheat. However, only the cross MP/Acy1 was successfully backcrossed to another susceptible hexaploid wheat, LMPG-6. In the BC2F2 of the cross MP/Acy1//LMPG-6/3/MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 (infection types (IT) 1=, 1, or 1+; addition line 1) or stem rust race 15B-1 (IT 1 or 1+; addition line 2) were selected. Rust tests and examination of chromosome pairing of the F1 hybrids and the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. cylindricum C-genome chromosomes rather than on the D-genome chromosomes. The T. cylindricum chromosome in addition line 2 was determined to be chromosome 4C through the detection of RFLPs among the genomes using a set of homoeologous group-specific wheat cDNA probes. Addition line 1 was resistant to the 10 races of leaf rust and addition line 2 was resistant to the 10 races of stem rust, as was the T. cylindricum parent. The added C-genome chromosomes occasionally paired with hexaploid wheat chromosomes. Translocation lines with rust resistance (2n = 21 II) may be obtained in the self-pollinated progeny of the addition lines through spontaneous recombination of the C-genome chromosomes and wheat chromosomes. Such translocation lines with resistance against a wide spectrum of rust races should be potentially valuable in breeding wheat for rust resistance.Key words: wheat, Triticum cylindricum, rust resistance, gene transfer, addition line, molecular cytogenetics.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aegilops L.;Wheat Evolution and Domestication;2023

2. Harnessing Genetic Diversity for Addressing Wheat‐based Time Bound Food Security Projections;Bioresource Technology;2022-04-16

3. Flow sorting of C-genome chromosomes from wild relatives of wheatAegilops markgrafii,Ae. triuncialisandAe. cylindrica, and their molecular organization;Annals of Botany;2015-06-04

4. Wheat–Aegilops Introgressions;Alien Introgression in Wheat;2015

5. Aegilops;Wild Crop Relatives: Genomic and Breeding Resources;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3