AN ANALYSIS OF THE SELF-ENERGY PROBLEM FOR THE ELECTRON IN QUANTUM ELECTRODYNAMICS

Author:

Daykin P. N.

Abstract

Feynman's S-matrix for the self-energy of the free resting electron is evaluated without the restriction that the virtual photons in the intermediate state have only positive energy. Both the one-electron theory and the hole theory of the positron are treated. It is shown that in the one-electron theory the normally quadratically divergent transverse part of the self-energy vanishes if the photon field is assumed to be symmetric in positive and negative energies. A similar theorem does not hold in the hole theory. A particular type of interaction leads to a vanishing self-energy in one-electron theory. However, this does not solve the self-energy problem, as in this case radiation corrections to scattering would vanish as well. The S-matrix for the self-energy of a bound electron is evaluated in a similar manner. The decay probability for an excited state is calculated as the imaginary part of the self-energy. The correct value is obtained only in hole theory and in interaction with positive energy photons. In the special case in which the external field is a uniform magnetic field, again only hole theory with this same interaction gives the correct value for the anomalous magnetic moment.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3