Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification

Author:

Peron H.12,Hueckel T.12,Laloui L.12,Hu L. B.12

Affiliation:

1. Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Soil Mechanics (LMS), Station 18, CH-1015 Lausanne, Switzerland.

2. Duke University, Department of Civil and Environmental Engineering, Durham, NC 27708, USA.

Abstract

This paper presents the results of a comprehensive experimental study of the desiccation of fine-grained soils. Air drying of initially saturated soil slabs in controlled conditions is investigated by performing three kinds of tests: free desiccation tests, constrained desiccation tests (prevented shrinkage), and crack pattern tests. Strains, suction, water content, and crack geometry are investigated. Results reveal that unconstrained drying exhibits two stages: a domain with large, mostly irrecoverable deformations and degree of saturation close to 100%, followed by a domain with lower deformations at a decreasing degree of saturation. Homogeneous soil macroscopic cracking is possible only in the presence of boundary constraints and (or) moisture gradients, inducing the build-up of tensile stresses. Results also show that, for the initially saturated remoulded soils tested here, in the whole sample and near a crack initiation point, the degree of saturation remains very close to 100% until cracking, while cracking onset, the air-entry suction, and the shrinkage limit are close to each other. Cavitation nuclei and the formation of an irregular drying front at cracking initiation are commented upon in light of this observation. Finally, results suggest that the crack pattern geometry is the result of energy redistribution. A quantification of the process is proposed.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference51 articles.

Cited by 350 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3