Leaching of nitrate from temperate forests – effects of air pollution and forest management

Author:

Gundersen Per,Schmidt Inger K,Raulund-Rasmussen Karsten

Abstract

We compiled regional and continental data on inorganic nitrogen (N) in seepage and surface water from temperate forests. Currently, N concentrations in forest waters are usually well below water quality standards. But elevated concentrations are frequently found in regions with chronic N input from deposition (>8–10 kg ha–1a–1). We synthesized the current understanding of factors controlling N leaching in relation to three primary causes of N cycle disruption: (i) Increased N input (air pollution, fertilization, N2fixing plants). In European forests, elevated N deposition explains approximately half of the variability in N leaching, some of the remaining variability could be explained by differences in N availability or "N status". For coniferous forests, needle N content above 1.4% and (or) forest floor C:N ratio lower than 25 were thresholds for elevated nitrate leaching. At adjacent sites conifer forests receive higher N deposition and exhibit higher nitrate loss than deciduous forests; an exception is alder that shows substantial nitrate leaching through N fixation input. Fertilization with N poses limited risk to water quality, when applied to N-limited forests. (ii) Reduced plant uptake (clear-cut, thinning, weed control). The N cycle responses to plant cover disturbance by clear-cut are well studied. Nitrate losses peak after 2–3 years and are back to pre-cut levels after 3–5 years. Nitrogen losses increase with deposition and are higher at N rich sites. The extent and duration of the nitrate response is especially connected to the recovery of the vegetation sink. Less intensive disturbances like thinning have only minor effects on N loss. (iii) Enhanced mineralization of soil N (liming, ditching, climate change). Responses in nitrate leaching after liming may increase with N deposition and in older stands. However data on these types of N cycle disruption are too sparse to allow general conclusions on controlling factors. Nitrate leaching occurs when N deposition (input) and net mineralization (N status) exceed plant demand. A combined N flux to the soil of 50 to 60 kg ha–1a–1from N deposition and litterfall may be a threshold for nitrate leaching in undisturbed forests. This threshold also indicates risk of increasing losses in case of a disturbance (e.g., clear-cut). We conclude by discussing forest management options for water quality protection. These options focus on decreasing input, increasing plant uptake, increasing biomass removal, and (re)establishing immobilization and denitrification processes at the catchment scale.Key words: clear-cut, disturbance, forest management, nitrate, nitrogen cycling, nitrogen saturation.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3