Abstract
On the basis of a model for an internal wave field that is generated by a randomly varying isotropic wind stress and in which energy is transferred to small-scale turbulence, we derive the two-dimensional energy density function. The coherence scales are determined by the highest order internal wave mode that is not affected by virtual friction in the main thermocline, provided the curl of the wind stress has a white noise wave number spectrum. In general, this mode number scale is increasing monotonically with frequency. As a result of such a frequency dependent mode bandwidth, the vertical coherence drops with increasing frequency.
Publisher
Canadian Science Publishing
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献