Effects of K-channel blockers, calcium, and verapamil suggest different pacemaker mechanisms in cultured neonatal rat and embryonic chick ventricle cells

Author:

Schanne Otto F.,Boutin L.,Derosiers J.

Abstract

We compared the determinants of spontaneous activity in explanted neonatal (2-day-old) rat ventricle cells and in reaggregates derived from 15-day-old chick embryos. We studied the beating rate with an optical recording method and the underlying electrical activity with glass microelectrodes using the K current blockers cesium (Cs) and tetraethylammonium, varied Ca concentrations, and the Ca antagonist verapamil. In the rat (i) Cs increased the beating rate that was mediated by an increase in the slope of the diastolic potential, (ii) Ca increased the beating rate dramatically at low and medium concentrations to decrease it again at 8 mM Cao.2This increase in the beating rate was mediated by an increase of the slope of the diastolic depolarization. (iii) The beating rate decreased with verapamil at concentrations between 0.5 and 2.0 μM. The effects of Cs and Ca suggest that an increase in net inward current (block of IK1) underlies the positive chronotropic effect of Cs and that the pacemaker mechanism is determined by a Ca inward current or an IT1 type current modulated by variations of Cai. In the chick reaggregates (i) Cs and tetraethylammonium decreased the beating rate that was mainly brought about by a decrease in the slope of diastolic depolarization. (ii) Ca increased the beating rate but to a lesser degree than in the rat and there was no decrease of the beating rate at higher concentrations. (iii) The increase in the beating rate was not mediated by an increase in the slope of the diastolic potential but mainly by a depolarization of the maximum diastolic potential. (iv) Verapamil inhibited electrogenesis before any change in the diastolic potential was evident. The negative chronotropic effect of Cs and tetraethylammonium is compatible with the notion that a voltage- and time-dependent K current was inhibited and that this current determines the pacemaker. Moreover, the Ca component of the pacemaker mechanism in explanted rat ventricle cells resembles either that of the sinoatrial node or represents triggered activity.Key words: pacemaker mechanism, cultured cardiac cells, K-channel blocker, calcium, verapamil.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3