Detoxification of succinate semialdehyde in Arabidopsis glyoxylate reductase and NAD kinase mutants subjected to submergence stress

Author:

Allan Wendy L.1,Breitkreuz Kevin E.1,Waller Jeffrey C.2,Simpson Jeffrey P.1,Hoover Gordon J.1,Rochon Amanda1,Wolyn David J.1,Rentsch Doris3,Snedden Wayne A.2,Shelp Barry J.1

Affiliation:

1. Department of Plant Agriculture, University of Guelph, Bovey Building, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

2. Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada.

3. Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland.

Abstract

Succinate semialdehyde (SSA) is a mitochondrially generated intermediate in the metabolism of γ-aminobutyrate (GABA), which accumulates in response to a variety of biotic and abiotic stresses. SSA can be reduced to γ-hydroxybutyrate (GHB) in plants exposed to various abiotic stress conditions. Recent evidence indicates that distinct cytosolic and plastidial glyoxylate reductase isoforms from Arabidopsis thaliana (L.) Heynh (GLYR1 and GLYR2, respectively) catalyze the in vitro conversion of SSA to GHB, as well as glyoxylate to glycolate, via NADPH-dependent reactions. In the present study, recombinant Arabidopsis GLYR1 was demonstrated to catalyze the NADPH-dependent reduction of both glyoxylate and SSA simultaneously to glycolate and GHB, respectively. Six-hour time-course experiments with intact vegetative wild-type Arabidopisis plants subjected to submergence demonstrated that GHB accumulates in rosette leaves, and this is accompanied by increasing levels of GABA and alanine, NADH/NAD+ and NADPH/NADP+ ratios, and GLYR1 and GLYR2 transcript abundance. The use of GLYR (glyr1 or glyr2 knockout) and NAD kinase1 (NADK1 suppression or overexpression) mutants demonstrated that under submergence the production of GHB is mediated via both GLYR isoforms, the loss of either GLYR1 or GLYR2 activity influences redox status and the levels of GABA and alanine, and the manipulation of NADP(H) availability, specifically in the cytosol, influences the production of GHB. These results suggest that biochemical mechanisms are more important than transcriptional mechanisms in the regulation of GLYR activity and SSA detoxification in plants during the onset of submergence-induced oxygen deficiency.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3