Further studies on the corticosteroid-receptor system of the nasal gland of the domestic duck (Anas platyrhynchos)

Author:

Sandor Thomas,Mehdi Afzal Z.,DiBattista John A.

Abstract

The interaction of tritiated corticosterone with the nasal gland corticosterone receptor was investigated. Kinetic studies have shown that the association of [3H]corticosterone–receptor followed second-order reaction kinetics and the dissociation of the ligand from the receptor became "pseudo" first order in the presence of large excess of radioinert steroids at 0, 15, 25, and 35 °C. Similar data were obtained with an ammonium sulfate precipitate of the cytosol. Dissociation rate constants varied from 10−5 to 10−3 s−1 and the association rate constants varied from 0.5 × 104 to 3.8 × 105 M−1∙s−1, depending on the reaction temperature and the cytoplasmic receptor preparation. Equilibrium dissociation constants were in 10−8–10−9 M range. Equilibrium dissociation constants, calculated from kinetic data (kd/ka), showed a marked temperature dependence, while those obtained by saturation analysis varied much less with the reaction temperature. Data obtained in these experiments were used to calculate some thermodynamic parameters of the binding of corticosterone to the cytoplasmic receptor. The enthalpy of dissociation was 101.5 and 79.4 kJ∙mol−1 and the entropy of dissociation was 200 and 280 J∙mol−1∙degree−1 for the crude cytoplasmic receptor and the ammonium sulfate precipitate, respectively. From the equilibrium dissociation constants, the enthalpy and entropy of the equilibrium binding was calculated. Polynomial fitting of Ka values versus 1/T yielded enthalpy (ΔH) values from −0.9 to −88.8 kJ∙mol−1, depending on the nature of the receptor preparation. Entropy values were negative for kinetically derived equilibrium association constants from the crude cytosol at all temperatures and for 0 and 15 °C for the precipitate. Entropy values were positive for Ka values obtained from kinetic rates at 25 and 35 °C and for Ka's calculated from saturation analysis. Further experiments with the precipitate confirmed our previous contention that the nasal gland cytoplasmic corticosterone receptor metabolized the bound ligand to 11-dehydrocorticosterone, though the receptor preparation was corticosterone specific. The following hydrodynamic parameters were obtained on the binding macromolecule: molecular weight, 316 000; s20,w, 8.0; Stokes radius (rs), 77.3 Å (1 Å = 0.1 nm); total frictional ratio (f/f0), 1.71. The labeled receptor preparation translocated to homologous nuclear binding sites following heat activation and, at the nuclear binding sites, the ligand was almost exclusively in its oxidized form. Measurement of the nuclear steroid–receptor complex by exchange assay with [3H]corticosterone confirmed the presence of nuclear binding sites. From these studies, it was concluded that the nasal gland of the duck contains specific, glucocorticoid-type corticosterone receptors and that the effector steroid is probably 11-dehydrocorticosterone or a critical mixture of these two steroids, with the oxidized form predominating.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3