Peat-forming history of the ancestral Souris mire (Palaeocene), Ravenscrag Formation, southern Saskatchewan, Canada

Author:

Frank M C,Bend S L

Abstract

Analysis of the Palaeocene Souris Lignite (northern Williston Basin) using coal petrology and palynology reveals the existence of seven different mire types forming six cycles of varying thickness and composition. The order of mire types within the individual cycles allows an idealized mire type succession to be defined. The principle factor driving the idealized mire type succession is decreasing water depth within the peat-forming environment (terrestrialization), which leads to an increase in species diversity and a change in floral character from ferns→ angiosperms→ gymnosperms. Increases in water depth are the primary agent responsible for the termination of individual cycles in the ancestral Souris mire. Changes in nutrient status of the mire may also promote major changes in the floral assemblage, contributing to cycle termination. Comparison of densinite:ulminite ratios for the central part of the Souris seam shows an overall decrease in the degree of humification south-westward, indicating increased subsidence towards the Williston Basin centre, where seam partings are more common. Fern-rich mire types dominate throughout most of the sampled part of the Souris seam and such mires have been interpreted as representing transitional stages in both modern and Tertiary peat-forming environments. Previous analysis of other parts of the Souris seam has revealed areas dominated by Taxodium forest mires, representing more stable environments. The co-existence of transitional and stable environments suggests that the ancestral Souris mire may have been deposited during the onset of the closing stages of Palaeocene peat formation in the northern part of the Williston Basin.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3