Structure and cell envelope associations of flagellar basal complexes of Vibrio cholerae and Campylobacter fetus

Author:

Ferris F. G.,Beveridge T. J.,Marceau-Day M. L.,Larson A. D.

Abstract

To isolate intact flagella with basal complexes from Vibrio cholerae, a rhamnolipid hemolysin from Pseudomonas aeruginosa was used to disrupt the cell envelope and flagellar sheath. The nonionic detergent, Triton X-100, provided similar results for Campylobacter fetus. Each of these basal complexes possessed, in addition to the four classical rings, concentric membrane rings (CMR's) similar to those found in Aquaspirillum serpens. Through the use of stereo imaging (which allows structures to be visualized in three dimensions) of thin sections of cells which had been sequentially treated with a number of envelope perturbants (i.e., ethylenediaminetetraacetate, lysozyme, Triton X-100, rhamnolipid hemolysin, and sodium dodecyl sulfate), we have progressively exposed the component parts of the basal organelles in V. cholerae and C. fetus. Since the action of these envelope perturbants has been well documented, we have been able to determine the associations of the exposed portions of the flagellar basal complex and the layer of the cell envelope in which they would normally reside. From our observations we have concluded that in both V. cholerae and C. fetus the L ring is embedded in the outer membrane and the P ring is associated with the peptidoglycan. The CMR's are bracketed by the L and P rings and are sandwiched between the outer membrane and the peptidoglycan. Elements of both the S and M rings appear to be associated with the plasma membrane.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Structure, Composition, and Role of Periplasmic Stator Scaffolds in Polar Bacterial Flagellar Motors;Frontiers in Microbiology;2021-03-11

2. Motility in the epsilon-proteobacteria;Current Opinion in Microbiology;2015-12

3. Morphology and Ultrastructure;Helicobacter pylori;2014-04-09

4. The Famlily Vibrionaceae;The Prokaryotes;2014

5. The ultrastructure of a halobacterial cell in the region of the flagellum outlet;Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology;2008-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3