The effect of nursery substrate and fertilization on the growth and ectomycorrhizal status of containerized and outplanted seedlings of Picea abies

Author:

Vaario Lu-Min1234,Tervonen Arja1234,Haukioja Kati1234,Haukioja Markku1234,Pennanen Taina1234,Timonen Sari1234

Affiliation:

1. Finnish Forest Research Institute, Vantaa Research Unit, PL 18, FI-01301 Vantaa, Finland.

2. Forelia Oy, Nurmijärven taimitarha, Kiljavantie 664, 05100 Röykkä, Finland.

3. Biolan Oy, PL 2, 27501, Kauttua, Finland.

4. Department of Applied Biology, P.O. Box 27, 00014 University of Helsinki, Finland, and Department of Applied Chemistry and Microbiology, P.O. Box 56, 00014 University of Helsinki, Finland.

Abstract

Over a 5 year period, we examined the influence of substrate and fertilization on nursery growth and outplanting performance of Norway spruce (Picea abies (L.) Karst.). We focused on the relative growth and development of roots and shoots and the colonization intensity and diversity of ectomycorrhizal (ECM) fungi. In the nursery, a conventional substrate (low-humified Sphagnum peat) supplemented with woody material (wood fibre and pine bark) and either mineral or organic fertilizers yielded shorter seedlings than those grown on the unmodified substrate. However, after outplanting, the growth rate of seedlings cultivated on modified substrates was higher than that of seedlings grown on the unmodified substrate. Seedlings cultivated in modified substrates had significantly higher root/shoot ratios and ECM diversity; the latter remained significant after ≥3 years of outplanting. Seedlings grown on a substrate containing 50% woody material and supplemented with organic fertilizer had the highest growth rate among all seedlings during the 3 year period of outplanting. Colonization intensity of ECM fungi was high in all seedlings except for those grown in heavily fertilized substrate. This study suggests that nursery techniques that produce seedlings with higher root/shoot ratios and ECM diversities could improve plantation success and growth rate for at least the first 3 years of outplanting.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3