Far-red light stimulates internode elongation, cell division, cell elongation, and gibberellin levels in bean

Author:

Beall Frederick D.,Yeung Edward C.,Pharis Richard P.

Abstract

The contributions of cell division and cell elongation and the potential role of gibberellins in the far-red light stimulation of bean internode elongation were investigated. When bean plants, Phaseolus vulgaris cv. Kentucky Wonder, were grown in white light supplemented with far-red light a significant increase, up to threefold, in internode elongation was observed. Microscopic examination revealed that cell lengths were also increased but by a lower magnitude than internode length. Cell-labeling studies with [3H]thymidine showed that nuclei labeling was increased in internodes receiving supplemental far-red light. Thus far-red light induced increased internode elongation is a result of both increased cell elongation and increased cell division. Gibberellins A1, A20, A19, A44, and A4 and kaurenoic acid were identified in extracts of internode tissue by gas chromatography – mass spectroscopy using [2H2]-labeled internal standards for quantification. It thus appears that the early C-13 hydroxylation pathway is operative in the elongating internode. Endogenous GA1 and GA20 were approximately twofold higher in the first internodes of plants receiving supplemental far-red light. A comparison of the metabolism of exogenously supplied [2H2]GA19 suggested that GA turnover was greater in tissues exposed to supplemental far-red light. These results indicate that both cell division and elongation contribute to the enhanced elongation response of bean internodes to far-red light and that these processes are correlated with an increase in GA levels and (or) metabolism. Keywords: Phaseolus, gibberellins, phytochrome, far-red light.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3