Gas-phase reactions of atomic lanthanide cations with methyl chloride — Periodicities in reactivity

Author:

Zhao Xiang,Koyanagi Gregory K,Bohme Diethard K

Abstract

Room temperature reactions of lanthanide atomic cations (excluding Pm+) with CH3Cl are surveyed systematically in the gas phase using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer. Reaction rate coefficients are reported along with product distributions in He at 0.35 Torr (1 Torr = 133.3224 Pa) and 295 K. Cl atom transfer is the predominant reaction channel observed with all 14 lanthanide cations, but minor CH3Cl addition also occurs with the late lanthanide cations Dy+, Ho+, Er+, Tm+, and Yb+. The reaction efficiency for Cl atom transfer is shown to be governed by the energy required to promote an electron to achieve a d1s1excited electronic configuration in which two non-f electrons are available for bonding: it decreases as the promotion energy increases and the periodic trend in reaction efficiency along the lanthanide series matches the periodic trend in the corresponding electron-promotion energy. This behaviour is consistent with a C—Cl bond insertion mechanism of the type proposed previously for insertion reactions of Ln+cations with hydrocarbons and methyl fluoride. Direct Cl atom abstraction by a harpoonlike mechanism was excluded because of an observed noncorrelation of reaction efficiency with IE(Ln+). A remarkable Arrhenius-like correlation is observed for the dependence of reactivity on promotion energy: the early and late lanthanide cations exhibit characteristic temperatures of (1.4 ± 0.2) × 104and (4.5 ± 0.3) × 103 K, respectively. A rapid second Cl atom transfer occurs with LaCl+, CeCl+, GdCl+, TbCl+, and LuCl+, but there was no evidence for a third chlorine atom abstraction with any of the LnCl2+cations. Both LnCl+and LnCl2+add up to five methyl chloride molecules under the experimental operating conditions of the ICP/SIFT tandem mass spectrometer.Key words: lanthanide cations, Cl atom transfer, electron promotion, methyl chloride.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3