Douglas-fir forest soils colonized by ectomycorrhizal mats. I. Seasonal variation in nitrogen chemistry and nitrogen cycle transformation rates

Author:

Griffiths Robert P.,Caldwell Bruce A.,Cromack Jr. Kermit,Morita Richard Y.

Abstract

Monthly samples of ectomycorrhizal mat soils from a maturing Douglas-fir forest and adjacent nonmat soils were collected and analyzed for respiration, acetylene reduction activity, denitrification rates, extractable ammonium, nitrogen mineralization, microbial biomass, temperature, pH, percent moisture, total phosphate, nitrogen, and carbon. Seasonal patterns suggested complex interactions among the host tree, ectomycorrhizal fungus, and the mat microbial community as influenced by seasonal changes in moisture, temperature, and light availability. The most dramatic changes in rates were found during moisture-temperature transition periods in the spring and fall. Respiration within the mat community was highest during the period when tree growth is normally the greatest (in the spring and fall). In addition, there was a major respiration peak observed in the winter that we hypothesize was caused by the utilization of labile carbon by microheterotrophs. Differences were also observed between mat and nonmat soils in respiration rates, microbial biomass carbon, acetylene reduction activity, and levels of mineralizable nitrogen, which were all generally higher in the mat soils, and pH and denitrification rates, which were generally lower in nonmat soils. There is also evidence that suggests that nitrogen is very tightly coupled within the mat communities.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3