Landscape use by fishers (Pekania pennanti): core areas differ in habitat than the entire home range

Author:

Kordosky Jennifer R.1,Gese Eric M.2,Thompson Craig M.3,Terletzky Patricia A.1,Purcell Kathryn L.4,Schneiderman Jon D.5

Affiliation:

1. Department of Wildland Resources, Utah State University, Logan, UT 84322, USA.

2. U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Department of Wildland Resources, Utah State University, Logan, UT 84322, USA.

3. U.S. Department of Agriculture, Forest Service, Region 1, Missoula, MT 59804, USA.

4. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Fresno, CA 93710, USA.

5. Great Basin Institute, Reno, NV 89511, USA.

Abstract

Home ranges have long been studied in animal ecology. Core areas may be used at a greater proportion than the rest of the home range, implying the core contains dependable resources. The Pacific fisher (Pekania pennanti (Erxleben, 1777)) is a rare mesocarnivore occupying a small area in the Sierra Nevada Mountains, California, USA. Once statewide, fishers declined in the 1900s due to trapping, habitat fragmentation, and development. Recently, drought induced by climate change may be affecting this population. We examined space use of fishers in their core versus their home range for levels of anthropogenic modifications (housing density, road density, silvicultural treatments), habitat types, and tree mortality. We found core areas contained more late-successional forest and minimal human activity compared with their territory. Their core had higher levels of dense canopy and higher amounts of conifer cover, while minimizing the amount of buildings, developed habitat, and low canopy cover. Fishers may in effect be seeking refugia by minimizing their exposure to these elements in their core. Conserving landscape components used by fishers in their core areas will be important for the persistence of this isolated population.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3