Effect of ionophores on denitrification inFlexibacter canadensis

Author:

Wu Qitu,Knowles Roger,Niven Donald F.

Abstract

Denitrification by Flexibacter canadensis was investigated by measuring the production and (or) consumption of nitrite, nitric oxide (NO), and nitrous oxide (N2O) under anaerobic conditions. Carbonyl cyanide m-chlorophenylhydrazone (CCCP), carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), 2,4-dinitrophenol, and nigericin, but not valinomycin-K+inhibited the production of nitrite and N2O from nitrate by intact cells. However, CCCP, FCCP, 2,4-dinitrophenol, nigericin, and valinomycin-K+did not affect nitrite production from nitrate by cell-free extracts. These results suggest that nitrate transport was dependent on the transmembrane pH gradient but not on the membrane potential. CCCP, FCCP, and nigericin but not 2,4-dinitrophenol and valinomycin-K+caused NO accumulation during the reduction of nitrite, and also inhibited NO consumption and N2O production from nitrite by intact cells. These results preclude an explanation for NO accumulation based on the collapse of the proton motive force by ionophores, and imply that CCCP, FCCP, and nigericin perhaps dissociated a nitrite reductase–nitric oxide reductase complex, and (or) inhibited nitric oxide reductase specifically. 2,4-Dinitrophenol and CCCP did not inhibit the reduction of N2O to dinitrogen. Addition of ≤ 1.16 μM dissolved NO did not affect the production of nitrite from nitrate, or the disappearance of nitrite or N2O. The rate of NO consumption was linear with concentrations of dissolved NO up to 67 nM. Above 67 nM NO, NO consumption was inhibited, suggesting that NO is toxic to nitric oxide reductase.Key words: ionophores, denitrification, nitric oxide, Flexibacter canadensis.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3