An endophytic fungus Schizophyllum commune isolated from Panax ginseng enhances hairy roots growth and ginsenoside biosynthesis

Author:

Xie Xing-Guang1,Zhang Zhen-Zhen12,Chen Ling3,Ming Qian-Liang4,Sheng Ke-Xin1,Chen Xi1,Rahman Khalid5,Feng Kun-Miao1,Su Juan1,Han Ting1ORCID

Affiliation:

1. Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China

2. Naval Medicine Center of PLA, Naval Medical University, Shanghai, China

3. Shanghai Putuo Mental Health Center, Shanghai, China

4. Department of Pharmacognosy, School of Pharmacy, Army Medical University, Chongqing, China

5. Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK

Abstract

Using endophytic fungal elicitors to increase the accumulation of valuable secondary metabolites in plant tissue culture is an effective biotechnology strategy. In this study, a collection of 56 strains of endophytic fungi were isolated from different organs of cultivated Panax ginseng, of which seven strains can be symbiotically co-cultured with the hairy roots of P. ginseng. Further experiments observed that strain 3R-2, identified as endophytic fungus Schizophyllum commune, can not only infect hairy roots but also promote the accumulation of specific ginsenosides. This was further verified because S. commune colonization significantly affected the overall metabolic profile of ginseng hairy roots. By comparing the effects of S. commune mycelia and its mycelia extract (EM) on ginsenoside production in P. ginseng hairy roots, the EM was confirmed to be a relatively better stimulus elicitor. Additionally, the introduction of EM elicitor can significantly enhance the expressions of key enzyme genes of pgHMGR, pgSS, pgSE, and pgSD involved in the biosynthetic pathway of ginsenosides, which was deemed the most relevant factor for promoting ginsenosides production during the elicitation period. In conclusion, this study is the first to show that the EM of endophytic fungus S. commune can be considered as an effective endophytic fungal elicitor for increasing the biosynthesis of ginsenosides in hairy root cultures of P. ginseng.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3