Effects of hexamethonium and methyl-p-tyrosine on normal rats subjected to convulsions induced by oxygen at high pressure

Author:

Banister E. W.,Singh A. K.

Abstract

Hexamethonium infusion (intravenous) does not alter the concentrations of brain catecholamines, ammonia, and amino acids in rats under normal conditions. However, it decreases the concentration of blood adrenaline (A) and nonadrenaline (NA) significantly without affecting blood ammonia and amino acids. Injection of α-methyl-p-tyrosine (α-MPT) (intraperitoneal) decreases brain catecholamines without affecting the concentration of ammonia and amino acids in the brain or catecholamines, ammonia, and amino acids in the blood.In normal, hexamethonium-, and α-MFT-treated rats convulsed by exposure to oxygen at high pressure (OHP), the concentration of ammonia and glutamine plus aspargine increased and glutamate and γ-aminobutyric acid (GABA) (brain only) decreased significantly in both blood and brain. After convulsion, hexamethonium and α-MPT effect the same degree of concentration change for ammonia and amino acids in both blood and brain.When hexamethonium-treated rats are convulsed by OHP, the concentrations of A and NA in blood increased significantly. However, the postconvulsive concentration of A in these rats is significantly less than the preconvulsive control values of normal, undrugged rats. Hexamethonium also prolongs the latency period before convulsions induced by exposure of rats to OHP. This protective action of hexamethonium against oxygen toxicity is probably due to (a) some direct effect of low circulating catecholamines, or (b) delay in the production of toxic levels of ammonia from oxidative deamination of catecholamines, as initial low catecholamine concentration would hinder accumulation of ammonia from such deamination.α-MPT treatment was ineffective in producing an increased latency period before convulsion occurred despite the prevailing low brain catecholamine initially produced by α-MPT treatment. However, the concentration of brain A, NA, and total catecholamines decreased significantly after α-MPT-treated rats were convulsed by OHP exposure. The response of blood catecholamines to OHP-induced convulsions in these α-MPT-treated rats is the same as in normal rats.As α-MPT blocks the synthesis of catecholamines, a further decrease in brain catecholamine values after oxygen-induced convulsions in drugged animals suggests that brain catecholamines are oxidatively deaminated to produce ammonia. These observations suggest that, contrary to earlier reports, brain catecholamines do play an important role in producing ammonia during oxygen toxicity, which, in turn, induces convulsions.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3