Interactions between reserve mobilization and regulation of nitrate uptake during regrowth of Lolium perenne L.: putative roles of amino acids and carbohydrates

Author:

Louahlia S.123,Laine P.123,MacDuff J. H.123,Ourry A.123,Humphreys M.123,Boucaud J.123

Affiliation:

1. Laboratoire Environnement, Patrimoine et Développement Durable, Faculté Polydisciplinaire de Taza, Université Sidi Mohamed Ben Abdallah, BP1223, Taza gare, Morocco.

2. U.M.R. INRA-UCBN 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S Institut de Biologie Fondamentale et Appliquée, Université de Caen Basse-Normandie, 14032 Caen CEDEX, France.

3. Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion Dyfed SY23 3EB, UK.

Abstract

In most forage grass and legume species the recovery of leaf growth following severe defoliation depends on mobilization of carbon and nitrogen reserves from the remaining tissues. Unusually, Lolium perenne L. is able to compensate for low levels of available N storage compounds by rapid up-regulation of mineral N uptake. To investigate the physiological basis of this behaviour, perennial ryegrass plants were exposed to a 10 ​d period of optimal mineral N (high-N plants) or zero N (low-N plants) supply before defoliation. N deprivation decreased total N and amino acid concentrations in roots, and increased root water soluble carbohydrate concentrations. Compared with high-N plants (control), fructans and fructose concentrations in roots of low-N plants were 74% and 49% higher, respectively. Low-N plants had higher rates of nitrate uptake following defoliation, and lower amino acid concentrations in the roots (mainly as asparagine and glutamine); a causal role was suggested by the inhibition of nitrate uptake by external root supply of amino acids to low-N plants or by a stimulation of N uptake of high-N plants by sucrose supply to the roots. The results suggest that down-regulation of nitrate uptake following defoliation of plants with high levels of N reserves, may be effected through an increased cycling of amino acids within the plant and by a shortage of carbohydrates. Results are discussed in relation to the proteolytic activities and mobilization of C and N reserves to leaf meristem.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3