Development and verification of a numerical model for the analysis of geosynthetic-reinforced soil segmental walls under working stress conditions

Author:

Hatami Kianoosh,Bathurst Richard J

Abstract

The paper describes a numerical model that was developed to simulate the response of three instrumented, full-scale, geosynthetic-reinforced soil walls under working stress conditions. The walls were constructed with a fascia column of solid modular concrete units and clean, uniform sand backfill on a rigid foundation. The soil reinforcement comprised different arrangements of a weak biaxial polypropylene geogrid reinforcement material. The properties of backfill material, the method of construction, the wall geometry, and the boundary conditions were otherwise nominally the same for each structure. The performance of the test walls up to the end of construction was simulated with the finite-difference-based Fast Lagrangian Analysis of Continua (FLAC) program. The paper describes FLAC program implementation, material properties, constitutive models for component materials, and predicted results for the model walls. The results predicted with the use of nonlinear elastic-plastic models for the backfill soil and reinforcement layers are shown to be in good agreement with measured toe boundary forces, vertical foundation pressures, facing displacements, connection loads, and reinforcement strains. Numerical results using a linear elastic-plastic model for the soil also gave good agreement with measured wall displacements and boundary toe forces but gave a poorer prediction of the distribution of strain in the reinforcement layers.Key words: numerical modelling, retaining walls, reinforced soil, geosynthetics, FLAC.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 278 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3