Article

Author:

Kuznetsov A M,Ulstrup Jens

Abstract

We discuss a broad theoretical frame for hydrogen transfer in chemical and biological systems. Hydrogen tunnelling, coupling between the tunnel modes and the environment, and fluctuational barrier preparation for hydrogen tunnelling are in focus and given precise analytical forms. Specific rate constants are provided for three limits, i.e., the fully diabatic, the partially adiabatic, and the fully adiabatic limits. These limits are all likely to represent real chemical or biological hydrogen transfer systems. The rate constants are referred particularly to the driving force and temperature dependence of the kinetic isotope effect (KIE). The origin of these correlations is different in the three limits. It is rooted in the tunnel factor and weak excitation of the heavier isotopes in the former two limits, giving a maximum for thermoneutral processes. A new observation is that the adiabatic limit also accords with a KIE maximum for thermoneutral processes but the KIE is here reflected solely in the activation Gibbs free energy differences, in this case rooted in the low-frequency environmental nuclear dynamics. Three systems of biological hydrogen tunnelling, viz. lipoxygenase, yeast alcohol dehydrogenase, and bovine serum amine oxygenase, offer unusual new cases for analysis and have been analysed using the theoretical frames. All the systems show large KIEs and strong indications of hydrogen tunnelling. They also represent different degrees of fluctuational barrier preparation, with lipoxygenase as the most rigid and bovine serum amine oxygenase as the softest system.Key words: generalized Born-Oppenheimer scheme, kinetic isotope effect, gated proton transfer, partially adiabatic proton transfer, proton tunnelling in enzyme catalysis.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3