Author:
Strausz Otto P.,Gunning Harry E.
Abstract
The reaction of NO with Hg 6(3P1) atoms has been studied under static conditions at 30°, over the pressure range 1–286 mm. The products were found to be N2, N2O, and higher oxides of nitrogen. At NO pressures exceeding 4 mm, the total rate of formation of N2+N2O was constant, while the ratio N2O/N2 increased linearly with the substrate pressure. The rate was found to vary directly with the first power of the intensity at 2537 Å, and a value of 1.9 × 10−3 moles/einstein was established for the quantum yield of N2 + N2O production. In the proposed mechanism, reaction is attributed to the decomposition of an energy-rich dimer, (NO)2*, which is formed by the collision of electronically excited (4II) NO molecules with those in the ground state. The (NO)2* species is assumed to decompose by the steps: (NO)2* → N2 + O2 and (NO)2* + NO → N2O + NO2. The mechanism satisfactorily explains the observed behavior of the system.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献