Using molecular microbial ecology to define differential responses to the inoculation of barley silage

Author:

Xu Shanwei1,Dunière Lysiane2,Smiley Brenda3,Rutherford William3,Qi Samuel3,Nair Jayakrishnan2,Wang Yuxi2,McAllister Tim A.2

Affiliation:

1. Alberta Agriculture and Forestry, Lethbridge, AB T1J 4V6, Canada.

2. Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada.

3. Corteva, Forage Additive Research, Johnston, IA 50131, USA.

Abstract

Previously, we investigated the impact of a mixed Lactobacillus buchneri, Lactobacillus plantarum, and Lactobacillus casei inoculant on fermentation and aerobic stability of barley silage over two years in 2009 and 2010. In 2009, a classical response to inoculation was obtained with an increase in acetic acid concentration of silage ensiled in both mini- and bag silos. In 2010, this classical response was not observed in mini-silos but was observed in bag silos. The objective of this study was to determine if molecular microbial ecology could explain the differential responses to the inoculation of barley silage between the two years. The Illumina MiSeq sequencing results showed that inoculation increased Lactobacillus and lowered Pediococcus, Weissella, and Leuconostoc in both types of silos in 2009. However, a similar trend was not observed in mini-silos, but was instead observed in bag silos in 2010. Inoculation did not alter the core fungal community in either silo type in either year. Cladosporium, Leptosphaeria, and Cryptococcus were abundant in fresh forage, but were superseded by Pichia and Kazachstania after ensiling. Our results suggest that changes in silage chemistry corresponded to differences observed in microbial ecology. Inoculation may have less impact when using more mature crops with shorter ensiling times.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Food Animals

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3